P Pearson Edexcel

Mark Scheme
(Results)

November 2021

Pearson Edexcel GCSE
In Physics (1PH0) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

November 2021
Publications Code 1PHO_1H_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	AO3 2a and 2b
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question number	Answer	Mark
$\mathbf{1 (a)}$	D 23 kHz	(1) AO2 below 20 kHz

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \begin{array}{l}\text { Additional } \\ \text { guidance }\end{array} & \text { Mark } \\ \hline \mathbf{1 (b i)} & \text { An explanation linking: } & & \begin{array}{l}\text { (2) } \\ \\ \end{array} \text { frequency (1) }\end{array} \begin{array}{l}\text { accept } \\ \text { wavelength } \\ \text { relevant } \\ \text { frequency value } \\ \text { with unit } \\ \text { eg>20 kHz }\end{array}\right]$.

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (b i i)}$	A description to include: send pulse to a wall/reflecting surface OR detect the echo (1)	accept measure time to receive echo OR reflection back OR record time to echo/return	AO3
measure distance (to wall and time to echo) (1) use speed $=2 \times \frac{\text { distance (1) }}{\text { time }}$			

Question number	Answer	Additional guidance	Mark
2(a)	uses data taken from x axis (1)		(2) CS1
28(cm) (1)	award full marks for correct answer without working		

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & \mathbf{2} \mathbf{b}(\mathrm{i}) \\ & \mathrm{CS} 1 \end{aligned}$	a description to include count the number of waves(1) (arriving/passing a point) in a specific time(1) use frequency $=\frac{\text { number of waves }}{\text { time }}$ (1)	ignore in one second count the number of waves in one second scores 2 marks (MP1 and MP3) find the time between one wave and the next scores 2 marks (MP1 and MP2)	$\begin{aligned} & \text { (3) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
2 b(ii) CS1	substitution (1)	$\underline{1.5}$ $1.5=0.7 \times \lambda$ rearrangement and evaluation $2.1(4) \mathrm{m}$ allow $\frac{0.7}{1.5}$ for 1 mark	(2) AO2

Question number	Answer	Additional guidance	Mark
$\mathbf{2 ~ b (i i i) ~}$	A description to include:		
CS1			
mention of			
oscillations/vibrations (1)	EITHER transverse - (oscillations) perpendicular to direction of wave (travel) (1) OR and down OR longitudinal - (oscillations) in (movements) OR back and forth	AO1	
	same direction as wave (travel) (1)	transverse movement up and down but longitudinal is side to side (1 mark only)	

Question number	Answer	Mark
3(a) CS2	B ionising and emitted by unstable nuclei	(1) AO1 emissions incorrect stable nuclei do not give radioactive C is incorrect not all radioactive emissions are neutral D is incorrect not all radioactive emissions are neutral

Question number	Answer	Additional guidance	Mark
3(b) CS2	same number of protons (1)	same atomic number	(2) AO2
	different number of neutrons (1)	different mass number	

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (c) (i)}$ CS2	An explanation to include; there is no aluminium to absorb β particles (1)	aluminium absorbs/stops/blocks beta particles	(2) more β particles reach the G- M tube (1)

Question number	Answer	Additional guidance	Mark
3 c (ii) CS2	(idea of) background radiation	a named source of background radiation	(1) AO3

Question number	Answer	Additional guidance	Mark
3c (iii) CS2	becquerel	accept Bq accept close spelling	(1)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \begin{array}{l}\text { Additional } \\ \text { guidance }\end{array} & \text { Mark } \\ \hline \begin{array}{l|l}\text { 3d } \\ \text { CS2 }\end{array} & 33 \text { days is 3 half-lives (1) } & \frac{1.7 \times 10^{23}}{2(\times 2 \times 2)} & \mathbf{\text { AO2 }} \\ & 2.1(25) \times 10^{22}(1) & \begin{array}{l}2.1(25) \text { to any } \\ \text { other power of } \\ \text { ten scores mp1 } \\ \text { only }\end{array} & \begin{array}{l}\text { award full marks } \\ \text { for correct } \\ \text { answer without } \\ \text { working. }\end{array}\end{array}\right\}$

Question number	Answer	Mark
$\mathbf{4 ~ (a)}$	The only correct answer is D the discovery of cosmic microwave background (CMB) radiation	(1) AO1 Universe had a beginning B is not correct, it is evidence against the geocentric model of the Universe C is not correct, it is evidence for other solar systems

Question number	Answer	Additional guidance	Mark
4(b)	A description to include:		
wavelength (of the light) (1)	Red shift/Doppler effect	AO1 (Red shift) shows galaxy moving away [increase must be linked with wavelength]	(1) accept answers in terms of frequency

Question number	Answer	Additional guidance	Mark
4 (c)	similarity (both have) expanding Universe (1)	(2) difference one from: Steady State, Universe has no beginning (1)	different interpretation of CMBR
Steady State theory requires the continual formation of new matter, the Big Bang theory does not (1)			

Question number	Answer	Additional guidance	Mark
4(d)(i)	$1050 \pm 20(\mathrm{~km} / \mathrm{s})$		$\mathbf{(1)}$ AO3

Question number	Answer	Additional guidance	Mark
4 (d)(ii)	attempt at $\Delta y(1)$ evaluation (1) 70 ± 5 unit (1) $\mathrm{km} / \mathrm{s} / \mathrm{Mpc}$	could be seen on graph award 2 marks for correct answer without working independent mark km/s Mpc s^{-1} or per second	$\begin{aligned} & \text { (3) } \\ & \text { AO3 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
4 (d)(iii)	an explanation linking:	(2) AO3 points are scattered widely about the line (on graph) (1) giving wide range of possible gradients (1)	there are many possible best fit lines

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & \hline 5(a)(i) \\ & \text { CS } 3 \end{aligned}$	curve through origin, through all points - by eye (1)		$\begin{aligned} & \hline \text { (1) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{5}(\mathbf{a})($ (ii) CS3	$(\boldsymbol{r}=) 42\left(^{\circ}\right) \pm 2\left(^{\circ}\right) \quad(1)$	ECF their graph	AO3

Question number	Answer	Additional guidance	Mark
$\mathbf{5}(\mathbf{a) (i i i)}$ CS3	Description to include two from: \boldsymbol{r} increases as \boldsymbol{i} increases (1)	\boldsymbol{r} increases as \boldsymbol{i} increases	AO3
	(but) not in proportion (1)	(2) (but) not in even steps/not straight line/non- linear/gradient changes	
	increase in \boldsymbol{r} becomes less (for same increase in \boldsymbol{i}) (1)	\boldsymbol{r} always less than \boldsymbol{i}	

Question number	Answer	Additional guidance	Mark
5 (c) CS3	Explanation linking three from:		(3) (some) light is reflected (1) (at) the top edge (1) (some) light is absorbed (1) by the glass (1)
	in the air	in the (glass) block	credit responses in terms of attenuation/ dispersion/reflection at the second face/spreading out

| Question
 number | Answer | | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (d) | | | |
| CS3 | | | |

	A is not correct because the velocity in air is the same before and after the glass C is not correct because the velocity is constant inside the glass	D is no correct because the velocity in glass is not greater than the velocity in air

Total for Question 5 = 9 marks)

Question number	Answer	Mark
$\begin{aligned} & 6(a) \\ & \text { CS4 } \end{aligned}$	[x] C A is not correct because it shows a constant velocity of $0.4 \mathrm{~m} / \mathrm{s}$ B and D are not correct because they show constant acceleration.	$\begin{aligned} & \text { (1) } \\ & \text { AO3 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & 6 \text { (b)(i) } \\ & \text { CS4 } \end{aligned}$	attempt to use correct data from graph or equation (1) substitution (1) $(a=) \frac{26-14}{34}$ evaluation to 2 sf (1) $0.35\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	quoting $a=\frac{(\Delta) v}{t}$ or $a=$ gradient (of line) 0.3529... scores mp1 and mp2 $\frac{26}{34}$ scores mp1 independent mark award full marks for correct answer without working.	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & 6 \text { (b)(ii) } \\ & \text { CS4 } \end{aligned}$	attempt to calculate area under the line (1) calculates EITHER area of triangle OR area of rectangle (1) $204(m) \text { or } 476(m)$ evaluation (1) $680(\mathrm{~m})$	accept count squares use of $v^{2}-u^{2}=2 a x$ $x=\frac{\underline{v}^{2}-u^{2}}{2 a}$ allow ecf from b(i) award full marks for correct answer without working award 1 mark for final answer 408 (m)	$\begin{aligned} & \text { (3) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
6 (c) CS4	An explanation linking three of:		(3)
	acceleration increases (1)		AO1
	as F = ma (1)		
(and) mass decreases (1)			
due to burning/using fuel (1)	independent mark		

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \begin{array}{l}\text { Additional } \\ \text { guidance }\end{array} & \text { Mark } \\ \hline \begin{array}{l}\text { 7(a) } \\ \text { CS5 }\end{array} & \text { substitution (1) } & 0.28 & \begin{array}{l}\text { (2) } \\ \text { AO2 }\end{array} \\ & \text { evaluation (1) } & (\mathrm{t}=) \frac{2 \times 1.4}{} 0.53(\mathrm{~s}) & \begin{array}{l}\text { allow numbers that } \\ \text { round to 0.53 e.g. } \\ \text { 0.52915 } \\ \text { award full marks for } \\ \text { correct answer } \\ \text { without working. }\end{array}\end{array}\right\}$

Question number	Answer	Additional guidance	Mark
7(b)(i) CS5	(students') reaction time (is significant compared with recorded time) (1)	g is really 9.8	(1) AO2

Question number	Answer	Additional guidance	Mark		
(b)(b)(ii) CS5	One from		(1) AO3		
	use light gates (1)				
use automatic timer (1)					
Use time lapse/ stroboscopic					
photography (1)					
drop from greater height (1)				\quad	ignore repeats or
:---					
more people	$\quad\left\{\begin{array}{l}\hline\end{array}\right.$				

Question number	Answer	Additional guidance	Mark
7(c)(i)	substitution (1) (force $=\frac{8.7}{0.35}$ evaluation (1) $25(\mathrm{~N})$	use of force $=\frac{\text { change in momentum }}{\text { time }}$ allow numbers that round to 25 e.g 24.8571 award full marks for correct answer without working.	$\begin{array}{\|l\|} \hline \text { (2) } \\ \text { AO2 } \end{array}$

Question number	Answer	Additional guidance	Mark
7(c)(ii)	(magnitude) 25 (N) (1)	ecf from 7bi	(2)
	(direction) down(wards)/ towards floor (1)	allow arrow drawn pointing down "south"	

Question number	Answer	Additional guidance	Mark
7(d)	Two stage calculation substitution $_{1}(1)$ $\left(v^{2}-0=\right) 2 \times 10 \times 3.8$ evaluation of $v(1)$ $(v=) 8.7(m / s)$ substitution $0(1)$ $0.40=m \times 8.7$ rearrangement and evaluation (1) $(m=) 0.046(k g)$	use of $v^{2}-u^{2}=2 a x$ OR $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$ 76 allow numbers that round to 8.7 e.g. 8.718 use of $p=m v$ allow numbers that round to 0.046 e.g. 0.04598 award full marks for correct answer without working.	$\begin{aligned} & \text { (4) } \\ & \text { AO2 } \end{aligned}$

Total for Question 7 = 12 marks)

	Answer	Mark
$\mathbf{8 (a)}$	C Mars and Jupiter	(1) AO1 B and D are not correct because these are not the location of the asteroid belt

$\left.\begin{array}{|l|l|l|l|}\hline & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \mathbf{8 (b)} & \begin{array}{l}\text { rearrangement and substitution } \\ (1) \\ (\mathrm{t}=) \frac{2.2\left(\times 10^{12}\right)}{1.9\left(\times 10^{4}\right)} \\ \text { evaluation (1) } \\ 1.2 \times 10^{8}(\mathrm{~s})\end{array} & \begin{array}{l}\text { (2) } \\ \text { AO2 }\end{array} \\ & & \begin{array}{l}\text { allow numbers that } \\ \text { round to } 1.2 \times 10^{8} \text { e.g. } \\ 1.1579 \times 10^{8}\end{array} & \\ \text { award full marks for } \\ \text { correct answer } \\ \text { without working. }\end{array}\right]$

	Answer	Additional guidance	Mark
8(c)	An explanation linking two from: $\mathrm{a}=\underline{\Delta v}(1)$ velocity/ acceleration is a vector (1) the direction (of Vesta/velocity) is changing (1)	vector has magnitude and direction	(2) AO1

$\left.\begin{array}{|l|l|l|l|}\hline & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 8(d) } & \text { An explanation linking: } & \text { Vesta (also) radiates (energy) (1) } & \begin{array}{l}\text { (3) } \\ \text { allow emits (OWTE)for } \\ \text { radiates } \\ \text { the same amount of energy that } \\ \text { it absorbs (1) } \\ \text { in the same time (1) }\end{array}\end{array} \begin{array}{l}\text { AO1 } \\ \text { Vesta radiates at the } \\ \text { same average power } \\ \text { that it absorbs' scores } \\ \text { all three MPs } \\ \text { Vesta radiates energy } \\ \text { at the same rate that it } \\ \text { absorbs' scores all } \\ \text { three MPs }\end{array}\right]$.

	Answer	Additional guidance	Mark
8(e)(i)	W (1)	accept watt(s) J/s	$\mathbf{(1)}$
		AO2 do NOT accept Ws W/s watt(s) per second	

	Answer	Additional guidance	Mark
8(e)(ii)	$\begin{aligned} & \text { evaluation of } K(1) \\ & K=1^{(2)} \times 1400 \\ & \text { substitution (1) } \\ & \text { (intensity }=\frac{1400}{2.4^{2}} \\ & \text { evaluation (1) } \\ & 240\left(\mathrm{~W} / \mathrm{m}^{2}\right) \end{aligned}$	accept for one mark intensity $=\underline{K}$ 2.4^{2} allow numbers that round to 240 e.g. 243.05 accept answers in terms of ratios award full marks for correct answer without working.	$\begin{aligned} & \hline(3) \\ & \text { AO2 } \end{aligned}$

Total for question $8 \mathbf{= 1 2}$ marks

	Answer	Additional guidance	Mark
9(a)	A description to include two from:		(2) AO1
(radioactive material/substances) inside the food/body (1) emit radiation from inside the body (1) damage body cells (1)	trapped in the body exposed to radioactivity cause cancer		

	Answer	Additional guidance	Mark
9(b)	An explanation linking two from: to preserve food (1) by 'killing' bacteria (1) (gamma) is (very) penetrating (and so reaches all the food). (1) sterilising (1)	stop food going off	AO2

	Answer	Additional guidance	Mark
9(c)	One from:		
rearrangement (of particles) (1)			
loses/emits energy (1)			
becomes (more) stable (1)			

Questio n number	I ndicative content	Mark
9*(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 1 (6 marks) alpha - a particle (not a wave) - made up of 4 particles - helium nucleus - has a positive charge - when emitted by a nucleus, atomic number goes down by 2 - mass number goes down by 4 beta - a particle (not a wave) - made up of 1 particle - electron (or positron) - has a negative charge - when emitted, atomic number goes up by 1 - mass number does not change Ignore references to range, penetration, ionisation.	$\begin{aligned} & \text { (6) } \\ & \text { AO1 } \end{aligned}$

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	$1-2$	Additional guidance isolated facts	Possible candidate responses A beta particle is an electron. An alpha particle is a helium nucleus
Level 2	$3-4$	Additional guidance effect of alpha and beta decay or nature and effect of alpha or beta	A beta particle is an electron. When emitted the mass number doesn't change but atomic number goes up by one
Level 3	$5-6$	Additional guidance detailed comparison that includes nature of alpha and nature of beta and effect of either alpha or beta OR effect of alpha and beta and nature of either alpha or beta	Possible candidate responses Andate beta particle is an electron. When emitted the mass number goes up by one but atomic number
Alpha particle is a helium nucleus			

Total for Question 9 = 11 marks

	Answer	Additional guidance	Mark
10(a)i()	Two from:		(2) AO1
falling water/hydro (1) tides (1) sun/solar (1) geothermal (1) biomass (1)			

	Answer	Additional guidance	Mark
10(a)(ii)	recall and substitution (1)		(2) AO2
	evaluation (1) efficiency $\frac{2.2(\times 100)}{6.2}$	allow numbers that round to 0.35 e.g. 0.3548	accept 35(\%) for full marks
0.35(1)	award full marks for correct answer without working.		

	Answer	Additional guidance	Mark
10(a)(iii)	One from: air (has to be) moving on the other side of the blades (1) not all of the air hits the blade (1)	(1) AO3	
friction within the turbine/generator (1) some energy (always) transferred to thermal (1) it is fitted with a speed limiter (1)			

Questio n number	I ndicative content	Mark
10 * (b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 1 (6 marks) fission - (heavy) nucleus split - by a neutron - releases 2 daughter nuclei + more neutrons + energy - starts chain reaction advantages - already in use disadvantages - waste is radioactive - hard to dispose of - risk of accident fusion - (light) nuclei joined - at high energy/temperature/pressure/particle density - releases (eg) helium + energy advantages - no harmful waste products disadvantages - not achieved yet (on a practicable scale) - difficulty in achieving high energy/temperature/pressure/particle density	(6) AO1

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	$1-2$	Additional guidance isolated facts material.	Possible candidate responses fission involves a nucleus being split by a neutron
Level 2	$3-4$	Additional guidance simple comparison of fission and fusion	Possible candidate responses fission involves a nucleus being split by a neutron whereas fusion requires combining two light nuclei.
Level 3	$5-6$	Additional guidance detailed comparison of fission and fusion and one advantage or one difficulty compared to the other	Possible candidate responses
Fission involves nuclei split by a neutron. Fusion involves combining two light nuclei. The waste from fission is radioactive. Practicable fusion has not been achieved.			

(Total for Question 10 = 11 marks)

TOTAL FOR PAPER = 100 MARKS

